Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625995

RESUMO

The genetic diversity that exists in natural populations of Arachis duranensis, the wild diploid donor of the A subgenome of cultivated tetraploid peanut, has the potential to improve crop adaptability, resilience to major pests and diseases, and drought tolerance. Despite its potential value for peanut improvement, limited research has been focused on the association between allelic variation, environmental factors, and response to early (ELS) and late leaf spot (LLS) diseases. The present study implemented a landscape genomics approach to gain a better understanding of the genetic variability of A. duranensis represented in the ex-situ peanut germplasm collection maintained at the U.S. Department of Agriculture, which spans the entire geographic range of the species in its center of origin in South America. A set of 2810 single nucleotide polymorphism (SNP) markers allowed a high-resolution genome-wide characterization of natural populations. The analysis of population structure showed a complex pattern of genetic diversity with five putative groups. The incorporation of bioclimatic variables for genotype-environment associations, using the latent factor mixed model (LFMM2) method, provided insights into the genomic signatures of environmental adaptation, and led to the identification of SNP loci whose allele frequencies were correlated with elevation, temperature, and precipitation-related variables (q < 0.05). The LFMM2 analysis for ELS and LLS detected candidate SNPs and genomic regions on chromosomes A02, A03, A04, A06, and A08. These findings highlight the importance of the application of landscape genomics in ex situ collections of peanut and other crop wild relatives to effectively identify favorable alleles and germplasm for incorporation into breeding programs. We report new sources of A. duranensis germplasm harboring adaptive allelic variation, which have the potential to be utilized in introgression breeding for a single or multiple environmental factors, as well as for resistance to leaf spot diseases.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Genômica , Polimorfismo de Nucleotídeo Único , Genoma de Planta
2.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693764

RESUMO

Genome instability in newly synthesized allotetraploids of peanut has breeding implications that have not been fully appreciated. Synthesis of wild species-derived neo-tetraploids offers the opportunity to broaden the gene pool of peanut; however, the dynamics among the newly merged genomes creates predictable and unpredictable variation. Selfed progenies from the neo-tetraploid Arachis ipaënsis × Arachis correntina (A. ipaënsis × A. correntina)4x and F1 hybrids and F2 progenies from crosses between A. hypogaea × [A. ipaënsis × A. correntina]4x were genotyped by the Axiom Arachis 48 K SNP array. Homoeologous recombination between the A. ipaënsis and A. correntina derived subgenomes was observed in the S0 generation. Among the S1 progenies, these recombined segments segregated and new events of homoeologous recombination emerged. The genomic regions undergoing homoeologous recombination segregated mostly disomically in the F2 progenies from A. hypogaea × [A. ipaënsis × A. correntina]4x crosses. New homoeologous recombination events also occurred in the F2 population, mostly found on chromosomes 03, 04, 05, and 06. From the breeding perspective, these phenomena offer both possibilities and perils; recombination between genomes increases genetic diversity, but genome instability could lead to instability of traits or even loss of viability within lineages.


Assuntos
Arachis , Fabaceae , Arachis/genética , Fabaceae/genética , Genoma de Planta , Melhoramento Vegetal , Recombinação Genética
3.
Nat Genet ; 48(4): 438-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901068

RESUMO

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Assuntos
Arachis/genética , Genoma de Planta , Cromossomos de Plantas/genética , Metilação de DNA , Elementos de DNA Transponíveis , Evolução Molecular , Ligação Genética , Anotação de Sequência Molecular , Ploidias , Análise de Sequência de DNA , Sintenia
4.
J Agric Food Chem ; 61(11): 2875-82, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23379758

RESUMO

Peanut seeds contain high amounts of oil and protein as well as some useful bioactive phytochemicals which can contribute to human health. The U.S. peanut mini-core collection is an important genetic resource for improving seed quality and developing new cultivars. Variability of seed chemical composition within the mini-core was evaluated from freshly harvested seeds for two years. Oil, fatty acid composition, and flavonoid/resveratrol content were quantified by NMR, GC, and HPLC, respectively. Significant variability was detected in seed chemical composition among accessions and botanical varieties. Accessions were further genotyped with a functional SNP marker from the FAD2A gene using real-time PCR and classified into three genotypes with significantly different O/L ratios: wild type (G/G with a low O/L ratio <1.7), heterozygote (G/A with O/L ratio >1.4 but <1.7), and mutant (A/A with a high O/L ratio >1.7). The results from real-time PCR genotyping and GC fatty acid analysis were consistent. Accessions with high amounts of oil, quercetin, high seed weight, and O/L ratio were identified. The results from this study may be useful not only for peanut breeders, food processors, and product consumers to select suitable accessions or cultivars but also for curators to potentially expand the mini-core collection.


Assuntos
Arachis/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Flavonoides/análise , Extratos Vegetais/análise , Óleos de Plantas/análise , Polimorfismo de Nucleotídeo Único , Estilbenos/análise , Arachis/enzimologia , Arachis/genética , Arachis/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Flavonoides/metabolismo , Genótipo , Extratos Vegetais/metabolismo , Óleos de Plantas/metabolismo , Resveratrol , Sementes/química , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Estilbenos/metabolismo , Estados Unidos
5.
BMC Genomics ; 13: 608, 2012 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-23140574

RESUMO

BACKGROUND: Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. RESULTS: A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. CONCLUSIONS: Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Genoma de Planta , Sintenia , Alelos , Arachis/classificação , Evolução Biológica , Diploide , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Polimorfismo Genético , Poliploidia , Locos de Características Quantitativas , Análise de Sequência de DNA
6.
BMC Genomics ; 13: 469, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967170

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. RESULTS: More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago. CONCLUSIONS: The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application for mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Evolução Molecular , Variação Genética , Genoma de Planta/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
7.
Theor Appl Genet ; 123(8): 1307-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21822942

RESUMO

Peanut (Arachis hypogaea L.) is one of the most important oilseed and nutritional crops in the world. To efficiently utilize the germplasm collection, a peanut mini-core containing 112 accessions was established in the United States. To determine the population structure and its impact on marker-trait association, this mini-core collection was assessed by genotyping 94 accessions with 81 SSR markers and two functional SNP markers from fatty acid desaturase 2 (FAD2). Seed quality traits (including oil content, fatty acid composition, flavonoids, and resveratrol) were obtained through nuclear magnetic resonance (NMR), gas chromatography (GC), and high-performance liquid chromatography (HPLC) analysis. Genetic diversity and population structure analysis identified four major subpopulations that are related to four botanical varieties. Model comparison with different levels of population structure and kinship control was conducted for each trait and association analyses with the selected models verified that the functional SNP from the FAD2A gene is significantly associated with oleic acid (C18:1), linoleic acid (C18:2), and oleic-to-linoleic (O/L) ratio across this diverse collection. Even though the allele distribution of FAD2A was structured among the four subpopulations, the effect of FAD2A gene remained significant after controlling population structure and had a likelihood-ratio-based R ( 2 ) (R ( LR ) ( 2 ) ) value of 0.05 (oleic acid), 0.09 (linoleic acid), and 0.07 (O/L ratio) because the FAD2A alleles were not completely fixed within subpopulations. Our genetic analysis demonstrated that this peanut mini-core panel is suitable for association mapping. Phenotypic characterization for seed quality traits and association testing of the functional SNP from FAD2A gene provided information for further breeding and genetic research.


Assuntos
Arachis/genética , Estudos de Associação Genética , Característica Quantitativa Herdável , Sementes/genética , Arachis/enzimologia , Ácidos Graxos Dessaturases/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA